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1 Introduction
Regularity theories of causation within the so-called INUS 1 framework aim
to define causation in terms of redundancy-free regularity relations between
factor values, typically representing event types. These theories build upon
John Mackie’s (1974) original INUS account and introduce additional non-
redundancy, or minimality, constraints. INUS theories capture intuitions about
causation found in influential accounts such as those by Hume (1748 (1963))
and Mill (1843), and they serve as a philosophical foundation for configura-
tional comparative methods (Rihoux and Ragin, 2009), a family of methods used
for discovering causal structures from data in various scientific fields, including
political science, social science, and health research.

INUS theories seek to provide a reductive definition of causation, meaning
that they aim to spell out how causal structures are determined by a non-causal
reduction base. This distinguishes these theories from, among others, inter-
ventionist accounts of causation (Woodward, 2003), which rely on the causal
concept of an intervention to define causation. INUS theories hold that the
non-causal reduction base of causal structures consists of regularity patterns—
that is, sets of regularity relations between event types. An INUS theory suc-
cessfully reduces causation to regularity patterns if, and only if (iff), it imposes
criteria that are satisfied by all and only those regularity patterns that track
genuine causal structures. When this condition is met, we can say that the
theory uniquely identifies causal structures based on regularity patterns.

This paper demonstrates that INUS theories fail to achieve their reductive
goal. I establish this by focusing on the theory developed by Baumgartner
and Falk (2023a), a recent theory in the INUS framework that imposes the
most stringent criteria on regularity patterns. In the remainder of this paper, I
refer to this theory as ‘the INUS∗ theory’. I show that the INUS∗ theory fails
to reductively define causation by presenting an example in which the INUS∗

theory cannot uniquely identify a causal structure based on regularity patterns,
because the criteria this theory imposes are insufficiently strict.

1‘INUS’ is a name originally derived from John Mackie’s (1974, 62) technical phrase In-
sufficient Non-redundant part of an Unnecessary Sufficient condition.
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While the problem that I present bears some resemblance to Jaegwon Kim’s
(1971, 434) critique of Mackie’s (1974) original INUS account—namely, that
there are regularity patterns based on which Mackie’s INUS account cannot
uniquely identify a causal structure—my critique goes beyond Kim’s. Kim’s
critique has been convincingly refuted by Baumgartner and Falk (2023a), who
point out that Kim’s examples involve overly simplistic candidate causal struc-
tures that lack the complexity required to be uniquely identifiable from regu-
larity patterns. Adding complexity to these candidate structures enables their
unique identification by the INUS∗ theory, and Baumgartner and Falk (2023a)
maintain that the INUS∗ theory analyzes causation not for simple toy worlds
but for the real world, in which causal structures are sufficiently complex to be
uniquely identified based on regularity patterns.

The example that I present differs from examples like Kim’s (1971, 434)
in that it possesses sufficient complexity to ensure that the INUS∗ theory’s
inability to uniquely identify it cannot be attributed to simplicity. Consequently,
Baumgartner and Falk’s (2023a) rebuttal of Kim’s critique does not apply to
my example. The INUS∗ theory’s inability to reduce my example structure to
regularity patterns therefore reveals a failure in the theory’s reductive aim.

To address this problem, I propose amending the INUS∗ theory by adding a
new criterion that enables the unique identification of my example structure. I
demonstrate that the so-called 3rd Non-Redundancy condition (NR3), a criterion
recently proposed by Zhang and Zhang (2025), is appropriate for this purpose.

While Zhang and Zhang (2025) have argued for integrating NR3 into the
INUS∗ theory, their arguments are unlikely to convince INUS theorists, as Zhang
and Zhang largely focus on causal discovery and provide little discussion of how
integrating NR3 results in a more adequate theory of causation. Importantly,
Zhang and Zhang (2025) leave unaddressed a key objection against integrating
NR3, despite acknowledging this objection and conceding that it is reasonable.

In addition to demonstrating that the INUS∗ theory without NR3 fails as
a reductive theory of causation and that adding NR3 would restore the the-
ory’s ability to reductively define causation, this paper refutes the unaddressed
objection against incorporating NR3 into the INUS∗ theory. Through these con-
tributions, the paper firmly establishes that NR3 must be integrated into the
INUS∗ theory of causation.

2 Background

2.1 Principles of INUS causation
INUS theories aim to define type-level causation while adhering to a number of
central principles. A first of these principles is that of causal anti-realism, entail-
ing a rejection of the notion that causation is a power or necessitating relation-
ship governing the behaviours of causes and their effects. Instead, INUS theories
assert that causation supervenes on these behaviours (Andreas and Günther,
2021). In this respect, INUS theories align with other anti-realist approaches
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like counterfactual (Lewis, 1973) and probabilistic (Suppes, 1970) accounts of
causation, while differing from realist production accounts (e.g. Mumford and
Anjum, 2010; see Hall, 2004 for a discussion of the distinction between realist
and anti-realist accounts).

Second, INUS theories take causation to be deterministic, in the sense that
an effect is a deterministic function of its causes: the same causes are accom-
panied by the same effects. This principle aligns, for instance, with Hume’s
famous description of a cause as “an Object, follow’d by another, and where all
the Objects, similar to the first, are follow’d by Objects, similar to the second ”
(Hume, 1748 (1963), 81) and conforms to common intuitions about causation
(Frosch and Johnson-Laird, 2011; Rothe et al., 2018; Schulz and Sommerville,
2006). In providing a deterministic account of causation, INUS theories con-
trast with probabilistic theories (Suppes, 1970), which assert that causes only
determine the probability distributions of their effects, allowing that the same
causes lead to different effects on different occasions.

A third principle of INUS theories, discussed less frequently than anti-realism
and determinism but crucial to many regularity accounts since Mill (1843), is
the conjunctivity of causation: often, an individual cause brings about its effect
only when combined with other individual causes (Rothman, 1976). For ex-
ample, striking a match will only cause a fire when instantiated in combination
with other factors, such as the presence of flammable materials. All components
of such a conjunctive bundle need to occur together to lead to the bundle’s ef-
fect. The principle of conjunctivity is essential in configurational comparative
methods, as many scientific questions investigated using these methods involve
complex causal structures in which multiple individual causes interact to deter-
mine an effect. For instance, outreach to one’s own patients may cause high
hepatitis C virus treatment uptake, though only when combined with another
individual cause, such as external medical site visits (Yakovchenko et al., 2020).

A fourth principle, also vital to INUS theories though discussed less fre-
quently than anti-realism and determinism, is the disjunctivity of causation: an
effect can have multiple alternative conjunctive bundles of causes, with only one
such bundle needing to be instantiated to bring about the effect. This principle,
also known as equifinality (Gerring, 2005, 164), implies that different conjunc-
tions of causes can lead to the same effect. For instance, as an alternative to
striking a match, a lightning strike (in conjunction with other individual causes)
can cause fire. Like conjunctivity, the disjunctivity of causation is crucial for an-
alyzing many scientific questions. For example, support to Ukraine by a given
EU member state may be caused by that member state facing a strong threat
from Russia, while alternatively being caused by a conjunction of military in-
vestments and public support (Haesebrouck, 2024).

2.2 Conceptual preliminaries
The INUS∗ theory defines causation in terms of regularity relations between
factor values, that is, between factors taking specific values (Baumgartner and
Falk, 2023a). An example of such a regularity relation is A=1 → B=0, meaning
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(a)

A B C E
σ1 1 1 1 1
σ2 1 1 0 1
σ3 1 0 1 0
σ4 1 0 0 1
σ5 0 1 1 0
σ6 0 1 0 0
σ7 0 0 1 0
σ8 0 0 0 0

(b)

Figure/Table 1: Figure (a) is a causal hypergraph representing the causal struc-
ture S1. Arrows represent direct causal relevance, ‘•’ stands for conjunction,
‘⋄’ means negation, and multiple arrows into the same node form a disjunc-
tion. Table (b) represents the so-called Humean mosaic of (a), referred to as δ1,
consisting of configurations σ1 to σ8.

that factor A taking the value 1 is sufficient for factor B taking the value 0. Here,
sufficiency is understood as material implication: whenever A=1 is given, B=0
is given too.

Following Baumgartner and Falk (2023a, 174), I limit my discussion to bi-
nary factors, which can take values of either 0 or 1. In this context, I use
italicized letters as a shorthand for factors taking a value of 1, and I use the
symbol ‘¬’ to indicate the negation of a factor value. For example, ‘A’ stands
for A=1 (e.g. the presence of event type A) and ‘¬A’ stands for A=0 (e.g. the
absence of event type A).

Consider the causal structure S1, depicted by the hypergraph (Falk et al.,
2024) in Figure 1a. In this representation, arrows signify direct causal relevance,
dots (‘•’) indicate conjunctions of factor values represented at arrow tails, dia-
monds (‘⋄’) represent negations, and multiple arrows into the same node form
a disjunction. S1 is a structure over the factor set F1 = {A, B, C, E}, which I
call the factor frame of structure S1. Following Mackie (1974), I discuss causal
structures like S1 relative to a causal field, which refers to a set of ‘standing
conditions’ or context factors that have fixed values in the unmeasured causal
background and are excluded from the factor frame (Baumgartner and Falk,
2023a, 182).

According to the INUS∗ theory, the same causal relevance relationships as
in Figure 1a can be represented by the following expression:

AB ∨A¬C ↔ E (1)

In this expression, concatenation represents and, ‘∨’ means or, and ‘↔’ de-
notes if and only if (iff), indicating material equivalence. Both Figure 1a and
biconditional (1) imply that there are two alternative conjunctive bundles of
causes—henceforth also referred to as conjunctive causes—either of which is
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sufficient for effect E relative to the given causal field: the conjunction of A and
B, or the conjunction of A and ¬C.

For example, if A, B, and C represent switches in an electric circuit (with, for
instance, A meaning that switch A is in position 1 and ¬A meaning that switch
A is in position 0), and E represents a lamp being on (E) or off (¬E) in that
same circuit, then both the biconditional and the figure imply that the lamp E
is turned on by either both A and B being in position 1 or A being in position 1
and C being in position 0. In general, a biconditional that satisfies the criteria
of causation imposed by the INUS∗ theory has a disjunction of conjunctions
involving at least two factor values as its (causal) antecedent and a single factor
value representing the effect as its consequent (Baumgartner and Falk, 2023a,
177-178, 187).2

The sets of regularities to which the INUS∗ theory aims to reduce causal
structures like S1 are regularities in ‘actual distributions of matters of fact’
(Baumgartner and Falk, 2023a, 174). To illustrate, consider Table 1b, which
represents the distribution of matters of fact over F1 that determines structure
S1. Each row in this table represents a configuration of the factors in F1 that
complies with the regularities implied by S1, and every logically possible value
combination of the factors in F1 that complies with the regularities implied by
S1 is featured in Table 1b. For example, as Table 1b lacks any configurations
featuring A and B together with ¬E, each configuration in this table complies
with the regularity AB → E, which is implied by S1. Meanwhile, all logically
possible combinations of values of A, B, and C appear in at least one con-
figuration in this table, since S1 does not prohibit any of these combinations:
configuration σ1 features A, B, and C, σ2 features A, B, and ¬C, and so on.

Since any set of configurations has a unique (exhaustive) set of regulari-
ties obtaining in it and any set of regularities has a unique (exhaustive) set of
configurations satisfying these regularities, there is a one-to-one correspondence
between sets of configurations and sets of regularities. I refer to sets of configu-
rations in which the regularity patterns that determine causal structures obtain
as Humean mosaics (Lewis, 1986, ix-x):

Humean mosaic of a causal structure: A Humean mosaic δ of a causal
structure S over factor frame F is the exhaustive set of configurations
of the factors in F which are empirically possible according to S, that is,
which do not violate any regularity relations implied by S.

Similarly, I will refer to the exhaustive set of configurations that do not violate
any regularity relations represented by a given logical expression as the ‘Humean
mosaic’ of that expression. For instance, the Humean mosaic in Table 1b, which
I will call δ1, is the mosaic of expression (1) as well as of structure S1. For
simplicity, I will, henceforth, often discuss the INUS∗ theory’s reductive aim in

2Requiring that antecedents contain at least two factor values while consequents contain
exactly one enables distinguishing causes from effects in a biconditional: the multiple factor
values in the antecedent are causes of the single factor value in the consequent (Graßhoff and
May, 2001, 97-99).



2.3 Theoretical preliminaries 6

terms of reducing causal structures to Humean mosaics rather than in terms of
reducing causal structures to regularity relations obtaining in Humean mosaics.

2.3 Theoretical preliminaries
According to the INUS∗ theory, a biconditional like (1) accurately tracks cau-
sation only if (i) the conjunctions in its antecedent are minimally sufficient and
(ii) the disjunction formed by these conjunctions is minimally necessary for the
consequent. A conjunction is minimally sufficient for a consequent iff it is suf-
ficient for the consequent and taking away any of its conjuncts would make it
lose its sufficiency (Baumgartner and Falk, 2023a, 176). For instance, if A by it-
self is sufficient for E, then a conjunction like AB is not minimally sufficient for
E because B is redundant for the conjunction’s sufficiency. Additionally, a dis-
junction is minimally necessary for E iff it is necessary for E and removing any
of its disjuncts (e.g. AB or A¬C in AB∨A¬C) would make it lose its necessity.

While Mackie’s (1974) original INUS account already posited that conjunc-
tions of causes must be minimally sufficient and disjunctions must be necessary
for the effect—a requirement referred to as the 1st Non-Redundancy condition
(NR1) by Zhang and Zhang (2025)—the requirement that disjunctions must
be minimally necessary was introduced later (Graßhoff and May, 2001; May,
1999). I follow Zhang and Zhang (2025) in referring to this latter requirement
as the 2nd Non-Redundancy condition (NR2):

NR2: A biconditional Π ↔ B satisfies NR2 for a Humean mosaic δ iff B is a
single factor value and Π is a minimally necessary disjunction of minimally
sufficient conjunctions for B in δ.

NR2-biconditional: A biconditional Π ↔ B is an NR2-biconditional for a
Humean mosaic δ iff Π ↔ B satisfies NR2 for δ.

If Π ↔ B is an NR2-biconditional, its antecedent Π is called an NR2-antecedent
(for B) and its consequent B is called an NR2-consequent.

Baumgartner and Falk (2023a, 178-179) formally link NR2 to difference-
making by proving an equivalence between a true biconditional satisfying NR2
and the existence of difference-making pairs of configurations for this true bicon-
ditional. Let Aϕ1∨ϕ2∨...∨ϕn be a disjunction of conjunctions of factor values,
let B be a single factor value, and let δ be a Humean mosaic in which bicon-
ditional Aϕ1∨ϕ2∨...∨ϕn ↔ B is true (i.e. satisfied in all configurations). ϕ1 is
said to represent A’s accompanying conjunct(s), and ϕ2, ..., ϕn are termed the
alternative conjunctions of Aϕ1. I will also refer to ϕ2, ..., ϕn as the alternative
conjunctions of A in Aϕ1 and of ϕ1 in Aϕ1. Then Aϕ1∨ϕ2∨...∨ϕn ↔ B satisfies
NR2 for δ iff this biconditional satisfies the criterion of NR2-Difference Making
(DM2) for δ:

NR2-Difference Making (DM2): Biconditional Aϕ1∨ϕ2∨...∨ϕn ↔ B sat-
isfies DM2 for δ iff δ contains at least one NR2-Difference-Making pair
(DM2-pair) for each factor value appearance in Aϕ1∨ϕ2∨...∨ϕn.
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NR2-Difference-Making pair (DM2-pair): A DM2-pair for A in Aϕ1∨ϕ2∨
...∨ϕn ↔ B is a pair of configurations {σi, σj} such that A and B are
given in σi and are not given in σj , while accompanying conjuncts ϕ1 are
present and alternative conjunctions ϕ2, ..., ϕn are absent in both σi and
σj .

To illustrate the notion of a DM2-pair, let us identify the DM2-pairs in δ1
for the first appearance of A in biconditional (1) (i.e. the appearance of A
in conjunction AB). Each such pair consists of two configurations σi and σj

that must satisfy a number of constraints. First, A and E must appear in σi

and must not appear in σj . Second, A’s accompanying conjunct B needs to be
given in both σi and σj . And third, both these configurations must have A’s
alternative conjunction A¬C absent.

As any configuration satisfying the constraints on σi features A and E, the
absence of A¬C requires that ¬C is not given and thus that C is given in such
a configuration. Therefore, the only configuration in δ1 qualifying as σi is σ1,
which has A and E given, B given, and C given. Meanwhile, any configuration
satisfying the constraints on σj features ¬A, automatically ensuring the absence
of A¬C and leaving the value of C irrelevant. Consequently, all configurations
in δ1 with A and E not given and B given, namely σ5 and σ6, qualify as σj .
The DM2-pairs in δ1 for the first appearance of A in biconditional (1) are thus
{σ1, σ5} and {σ1, σ6}.

Note that these pairs differ from the DM2-pairs of A’s second appearance,
namely {σ4,σ6} and {σ4,σ8}, which feature ¬C and have AB absent. This moti-
vates defining DM2-pairs for factor value appearances rather than factor values,
which is not explicitly stated but seems to be presupposed in Baumgartner and
Falk’s (2023a, 179) definition.

The equivalence between NR2 and DM2 shows that the INUS∗ theory’s crite-
rion that a cause A must appear in an NR2-antecedent for its effect B effectively
captures the notion that a cause makes a difference to its effect while controlling
for other causes: the constant presence of accompanying conjuncts and constant
absence of alternative conjunctions across configurations in a DM2-pair prevents
accompanying conjuncts and alternative conjunctions from accounting for the
variation in B across the pair, demonstrating A’s indispensability to account
for the variation in B (Baumgartner and Falk, 2023a, 178-179).

2.4 Causal models
While an NR2-biconditional can represent a single-effect causal structure, a
causal structure involving more than one effect is represented by a conjunction
of more than one NR2-biconditional in which each NR2-biconditional has a
distinct consequent—in the sense that no two biconditionals have a value of the
same factor as their consequent. Take the following expression as an example:

(AB ∨A¬C ↔ E)(¬B ∨ C ↔ G) (2)

Like (1), (2) implies that AB and A¬C are conjunctive causes of E. Addition-
ally, (2) implies that ¬B and C are (single-conjunct) conjunctive causes of G.
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Using our previous electrical circuit interpretation, we could say that G repre-
sents a second lamp in the circuit, which turns on when switch B is in position
0 or switch C is in position 1.

Not all conjunctions of NR2-biconditionals with distinct consequents are
suitable for representing causal structures. Baumgartner and Falk (2023a, 179-
182) note that some such conjunctions contain biconditionals that make no
difference to the Humean mosaic of the conjunction. This occurs when a con-
junction of NR2-biconditionals (with distinct consequents) for a given mosaic
contains an NR2-biconditional Π ↔ B that only expresses regularities already
implied by other NR2-biconditionals in the conjunction. In such cases, Π ↔ B is
redundant with respect to these other NR2-biconditionals and does not express
genuine causal relevance relations in conjunction with them.

Correspondingly, Baumgartner and Falk (2023a, 181-182) add to NR2 an
additional criterion of structural minimality :

Structural minimality: Let Ψ be a conjunction of NR2-biconditionals for a
Humean mosaic δ. Ψ is structurally minimal with respect to δ iff the
following two conditions are met:

1. Ψ is logically equivalent to the conjunction of all NR2-biconditionals
for δ; and

2. removing any conjunct from Ψ would result in a conjunction that
is no longer logically equivalent to the conjunction of all NR2-
biconditionals for δ.

Note that a single NR2-biconditional can be structurally minimal with respect
to a Humean mosaic, but only if that biconditional is logically equivalent to the
conjunction of all NR2-biconditionals for that mosaic.

I define single- or multiple-effect causal models satisfying structural mini-
mality in addition to NR2 as NR2-models:

NR2-model: A conjunction Ψ of biconditionals is an NR2-model for a Humean
mosaic δ iff the following three conditions are met:

1. each biconditional in Ψ is an NR2-biconditional for δ;

2. each biconditional in Ψ has a distinct consequent; and

3. Ψ is structurally minimal with respect to δ.

2.5 Ambiguities and expansions
Like causal discovery frameworks including the influential approaches developed
by Spirtes et al. (2000) and Pearl (2009), regularity theories within the INUS
framework face a challenge due to causal ambiguities. In the INUS framework,
causal ambiguities arise when different NR2-models that cannot represent the
same causal structure qualify as NR2-models for the same Humean mosaic. For
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A B C E
σ1 1 1 1 1
σ2 0 1 1 1
σ3 0 0 1 1
σ4 1 1 0 1
σ5 0 0 0 1
σ6 1 0 1 0
σ7 0 1 0 0
σ8 1 0 0 0

(a)

(b)

(c)

A B C E X1

σ1 1 1 1 0 0
σ2 0 1 1 1 0
σ3 0 0 1 0 0
σ4 1 1 0 1 0
σ5 0 0 0 1 0
σ6 1 0 1 0 0
σ7 0 1 0 0 0
σ8 1 0 0 0 0
σ9 1 1 1 1 1
σ10 0 1 1 1 1
σ11 0 0 1 1 1
σ12 1 1 0 1 1
σ13 0 0 0 1 1
σ14 1 0 1 0 1
σ15 0 1 0 0 1
σ16 1 0 0 0 1

(d)

Figure/Table 2: Table (a) depicts the Humean mosaic δ2. Figure (b) plots the
candidate causal structure represented by model (3), and Figure (c) plots the
candidate causal structure represented by model (4). Table (d) depicts mosaic
δ′2, which contains δ2 (highlighted in grey shading) as its proper part.
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instance, consider Humean mosaic δ2, depicted in Table 2a, over factor frame
F2 = {A, B, C, E}. There are two NR2-models for δ2:

AB ∨ ¬A¬B ∨ ¬AC ↔ E (3)

AB ∨ ¬A¬B ∨BC ↔ E (4)

As models (3) and (4) are NR2-models for the same Humean mosaic, I say that
they are NR2-equivalent to each other. Even though models (3) and (4) agree
that AB and ¬A¬B are conjunctive causes of E, these models are conflicting
causal models, that is, they cannot represent the same causal structure: model
(3) implies that ¬AC causes E, which is not implied by model (4), and model
(4) implies that BC causes E, which is not implied by model (3). The differ-
ent candidate causal structures represented by (3) and (4) are plotted by the
hypergraphs in Figures 2b and 2c, respectively.

The ambiguity about whether ¬AC or BC causes E in δ2 stems from A and
B’s multiple appearances within each NR2-biconditional for E. These multiple
appearances create specific dependencies among the conjunctions AB, ¬A¬B,
¬AC, and BC in δ2. For instance, since every configuration features either A
or ¬A, any configuration with both B and C must have either AB or ¬AC
present. Consequently, δ2 contains no configurations with the conjunction BC
present while both AB and ¬AC are absent, implying that any configuration in
δ2 with BC and without ¬AC must have AB present.

Note that any mosaic in which BC is insufficient for E contains a configu-
ration with BC and ¬E, and, more specifically, that any mosaic in which BC
is insufficient for E while ¬AC is sufficient for E contains a configuration with
BC, without ¬AC, and with ¬E. Therefore, as a configuration with BC and
without ¬AC must have AB present, any mosaic in which BC is insufficient
and ¬AC is sufficient for E contains a configuration with AB¬E. But δ2 does
not contain any configurations with AB¬E: such configurations are empirically
impossible because, as both (3) and (4) agree, AB is a conjunctive cause of E
(and thus sufficient for E).

In sum, BC being insufficient while ¬AC is sufficient would require a config-
uration with value combination AB¬E, but this is prohibited by the fact that
AB, which shares factors with ¬AC and BC, is sufficient for E (since all NR2-
models for δ2 agree that AB is a conjunctive cause of E). Similarly, the multiple
appearances of A and B in AB, ¬A¬B, ¬AC, and BC imply that, whenever
BC is sufficient for E while AB and ¬A¬B are conjunctive causes of E, ¬AC
must also be sufficient for E, and that whenever one of ¬AC and BC forms a
minimally necessary disjunction with AB and ¬A¬B, the other one (i.e. BC or
¬AC) must also form a minimally necessary disjunction with AB and ¬A¬B.

The ambiguity between models (3) and (4) is an illustration of Kim’s (1971,
434) critique of Mackie’s (1974) original INUS account. Kim considers the
inability of INUS theories to determine based on δ2 which one of ¬AC or BC
causes E to be a problem, as this inability suggests that these theories cannot
uniquely identify the causal structure of mosaic δ2 based solely on (the regularity
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relations obtaining in) this mosaic, that is, based solely on the causal structure’s
non-causal reduction base.

However, Baumgartner and Falk (2023a) argue that causal ambiguities need
not be problematic for the INUS∗ theory, as these ambiguities stem from con-
sidering factor frames that include only a limited number of factors. Candidate
causal structures over such limited factor frames may be insufficiently complex
to be determined by the distribution of matters of fact over the considered factor
frame alone. While Baumgartner and Falk (2023a, 187-188) explicitly acknowl-
edge that an INUS theory fails to provide a reductive definition of causation if
it cannot uniquely identify the causal structure of the actual world when the
factor frame is not limited, they argue that the inability of the INUS∗ theory
to uniquely identify a causal structure based on δ2 stems not from a flaw in the
theory but from the fact that δ2 reflects an artificially simple toy world which
does not have a causal structure that is sufficiently complex to be uniquely
determined by a Humean mosaic.

When faced with ambiguities, Baumgartner and Falk argue, complexity
should be added through a factor frame expansion, which amounts to integrating
additional factors into the factor frame and allowing them to vary (Baumgartner
and Falk, 2023a, 183-184):

Factor frame expansion: In an expansion of a factor frame F with a Humean
mosaic δ to a factor frame F′ with a Humean mosaic δ′, the following four
conditions are met:

1. F ⊂ F′ (i.e. F is a proper subset of F′);

2. δ is a proper part of δ′;

3. at least one factor X which is contained in F′ but not in F varies in
δ′; and

4. all factors in F′ are modally independent of each other, meaning that
they are ‘logically and conceptually independent and not related in
terms of metaphysical dependencies such as supervenience, constitu-
tion, or grounding’ (Baumgartner and Falk, 2023a, 175).

To illustrate the conditions that a factor frame expansion satisfies, consider the
expansion of factor frame F2 = {A, B, C, E} with mosaic δ2, by factor X1, to
factor frame F′

2 = {A, B, C, E, X1} with mosaic δ′2. δ′2 is displayed in Table 2d.
This expansion satisfies the first three conditions: F2 is a proper subset of F′

2, δ2
is a proper part of δ′2, and X1 varies in δ′2 in the sense that this mosaic contains
at least one configuration with X1 and at least one configuration with ¬X1.
Furthermore, in this paper, all factors are assumed to be modally independent,
such that the fourth condition is automatically satisfied.

The addition of X1 to conjunction ABX1 through this expansion renders
it empirically possible for A and B to appear in a configuration together with
¬E (when X1 is not given), which was required to reveal the insufficiency of
BC for E while preserving the sufficiency of ¬AC for E. Model (5) is the only
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NR2-model for δ′2:

ABX1 ∨ ¬A¬B ∨ ¬AC ↔ E (5)

This model is a supermodel of model (3):

Supermodel: An NR2-model M is a supermodel of an NR2-model M′ iff M′

can be derived from M by removing conjuncts from disjuncts in NR2-
antecedents, disjuncts from NR2-antecedents, and/or NR2-biconditionals
from the model (Baumgartner and Falk, 2024, 4).

To illustrate, in the case of models (5) and (3), the latter is obtained from the
former by removing conjunct X1 from disjunct ABX1.

Since model (3) is an NR2-model for the mosaic over F2 and (3)’s supermodel
(5) is an NR2-model for the mosaic over F′

2, the factor frame expansion of F2

to F′
2 corresponds to a model expansion of (3) to (5):

Model expansion: An expansion of a factor frame F with a Humean mosaic
δ to a factor frame F′ with a mosaic δ′ is a model expansion of NR2-model
M to NR2-model M′ iff:

1. M is an NR2-model for δ;
2. M′ is an NR2-model for δ′; and
3. M′ is a supermodel of M.

Accordingly, expanding factor frame F2 to F′
2 corresponds to adding complexity

to the causal structure represented by model (3), which resolves the ambiguity
between models (3) and (4) and determines that it is ¬AC rather than BC that
causes E.

2.6 Defining causal relevance
The INUS∗ theory’s definition of causal relevance (Baumgartner and Falk,
2023a, 192) combines the necessary conditions of causation discussed in Sec-
tions 2.3 to 2.5 into two criteria that are necessary and jointly sufficient for
causal relevance. The first criterion in this definition posits that causes are
contained in antecedents of structurally non-redundant NR2-biconditionals for
their effects. Since such containment is not always preserved after factor frame
expansions—as exemplified by BC in Section 2.5, which is contained in an NR2-
antecedent for E relative to factor frame F2 but not relative to expanded factor
frame F′

2—the second criterion stipulates that a cause’s containment in an an-
tecedent of a structurally non-redundant NR2-biconditional is preserved as the
factor frame is gradually expanded.

Causal relevance: Let Ω be a disjunction of conjunctions of factor values and
B a single factor value. Ω is causally relevant to B iff there exists a factor
frame F which is a set of (modally independent) factors including B and
all factors featured in Ω, with δ a Humean mosaic over F, such that the
following two conditions are satisfied:
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1. there exists an NR2-biconditional Π ↔ B for δ that is part of an
NR2-model for δ, such that Ω is contained in Π; and

2. for every factor frame expansion F′ ⊃ F with mosaic δ′: there exists
an NR2-biconditional Π′ ↔ B for δ′ that is part of an NR2-model
for δ′, such that Ω is contained in Π′.

3 The problem

3.1 Full S-expansions
Section 2.5 has explained how Baumgartner and Falk (2023a) attribute any fail-
ure of the INUS∗ theory to uniquely identify a causal structure based on a given
Humean mosaic to insufficient complexity in the candidate causal structures of
that mosaic. This response seems to assume that only simple candidate causal
structures are unidentifiable by the INUS∗ theory. However, Baumgartner and
Falk (2023a) fail to argue why this assumption would be satisfied. Furthermore,
they do not specify criteria for determining when a candidate causal structure
is so simple that, if it is unidentifiable by a theory, then this unidentifiability
should be attributed to simplicity rather than to a flaw in the theory.

Given this absence of a clear complexity threshold, this section character-
izes a complexity level that renders any failure of a theory to uniquely identify
structures possessing it attributable to this theory rather than to the simplicity
of these structures. Rather than attempting to pinpoint the precise thresh-
old at which a candidate causal structure should become sufficiently complex
for unique identification—a likely controversial matter—I define a standard of
complexity stringent enough for anyone to agree that, if the INUS∗ theory fails
to uniquely identify a structure with this complexity, then this failure must stem
from a problem with the theory, not from the structure’s simplicity.

Characterizing this complexity standard requires introducing some terminol-
ogy. First, while the INUS∗ theory defines causal relevance as a relation between
factor values, the upcoming discussion frequently references factors whose val-
ues are causally related. For conciseness, when a value of a factor X is causally
relevant to a value of another factor Y, I will say that X is a causing factor of
Y. Additionally, I define a factor X as an ancestor of a factor Y iff X is a caus-
ing factor of Y, or a causing factor of a causing factor of Y, and so on.3 This
allows us to define the property of acyclicity : a causal structure is acyclic iff it
does not feature any factor pair {X, Y} where X is an ancestor of Y and Y is
an ancestor of X. I limit the upcoming discussion to acyclic causal structures,
since the examples in Section 3.2 are acyclic and this limitation in scope will
simplify the discussion, particularly in Appendix A.

Furthermore, consider again the example model (5). I call X1 a specific
factor and its value X1 a specific factor value with respect to this model:

3More precisely, the relation ‘is an ancestor of’ is the transitive closure of the relation ‘is
a causing factor of’.
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Specific factor: A factor A is a specific factor with respect to an NR2-model
M (and with respect to a structure S represented by M) iff:

1. exactly one value of A appears in M;

2. this value appears exactly once in M; and

3. this appearance occurs in the antecedent of an NR2-biconditional of
M.

Specific factor value: A factor value A is a specific factor value in an NR2-
model M (and in a structure S represented by M) iff A appears in M;
and the factor of which A is a value is a specific factor with respect to M.

This means that a specific factor value in a model appears only once in this
model, that no other values of the same factor appear in this model, and that
this factor value is exogenous (i.e. not endogenous) with respect to this model:

Endogeneity: A factor A, and all values of A, are endogenous with respect to
an NR2-model M (and with respect to a structure S represented by M)
iff a value of A appears as an NR2-consequent in M (i.e. iff a value of A
is an effect in S).

Exogeneity: A factor A, and all values of A, are exogenous with respect to
an NR2-model M (and with respect to a structure S represented by M)
iff A appears in M and is not endogenous with respect to M (i.e. iff no
value of A is an effect in S).

Additionally, if a specific factor value A appears in an NR2-antecedent for a
factor value B in an NR2-model, then I will refer to A as a specific cause of
factor value B, and to factor A as a specific causing factor of factor B, with
respect to that model. Similarly, if a factor value A which is not a specific factor
value appears in an NR2-antecedent for factor value B in an NR2-model, then
A is a non-specific cause of B, and A a non-specific causing factor of B, with
respect to that model.

We have seen how the presented expansion of model (3) (with mosaic δ2),
by specific factor X1, to model (5) (with mosaic δ′2) resolves the ambiguity
between models (3) and (4). X1 acted as a kind of switch in (5) that could
be turned on (i.e. X1 is given) or off (i.e. X1 is not given) irrespective of
the values of A and B. Among the empirically possible configurations with
¬X1, there are configurations with factor value combination AB¬E that make
the distribution of matters of fact in (5)’s Humean mosaic sufficiently diverse
to reveal that ¬AC, and not BC, is a conjunctive cause of E. So, making
empirically possible additional factor value combinations of endogenous factor
E with E’s non-specific causing factors A and B, whose multiple appearances
in (3) gave rise to ambiguities, here results in the unique determination of the
causal structure represented by (5).

Unlike δ2, mosaic δ′2 contains both a configuration featuring value combina-
tion AB together with E and a configuration featuring AB together with ¬E.



3.1 Full S-expansions 15

An even more diverse distribution of matters of fact than the one in δ′2 could
contain, for each empirically possible value combination of A and B, a configu-
ration with E as well as one with ¬E together with that combination. In such
a case, I say that E varies independently of A and B:

Independent variation (factor): A factor X varies independently of a factor
set F in a Humean mosaic δ iff, for any combination of values of factors
in F that appears in at least one configuration in δ, δ contains at least
one configuration featuring this value combination together with X and
at least one configuration featuring this value combination together with
¬X.4

Independent variation (factor set): A factor set F varies independently in
a Humean mosaic δ iff every logically possible value combination of the
factors in F appears in at least one configuration in δ.

The introduced terminology allows to motivate and define the complexity
standard that prevents attributing identification failures to the simplicity of
candidate causal structures. I propose that such a complexity standard should
have the property of guaranteeing that any endogenous factor (such as E in (5))
varies independently of its non-specific causing factors (such as A and B in (5)).
As I will prove below, such independent variation can be guaranteed by adding
‘switches’ similar to X1 in (5) until a full S-expansion is achieved:

Full S-expansion: A model M (and a structure S represented by M) is a full
S-expansion iff:

1. M contains a specific factor value in each of its disjuncts; and

2. M contains a disjunct comprising only specific factor values in each
of its NR2-antecedents.

As an example of a full S-expansion, consider the following expansion of
model (3) with a Humean mosaic called δ∗2 (not displayed in this paper due to
space constraints):

ABX1 ∨ ¬A¬BX2 ∨ ¬AC ∨ Y1 ↔ E (6)

One of the specific factor values X1, X2, C, and Y1 appears in each disjunct in
model (6), and Y1 forms a disjunct comprising only specific factor values in this
model’s NR2-antecedent.

To demonstrate that each endogenous factor varies independently of its non-
specific causing factors in the Humean mosaic of any (acyclic) full S-expansion,
I begin with the example model (6). In this model, such independent variation
requires that E varies independently of A and B in δ∗2 , which is proven as follows:

4‘Independent variation’ as used in this paper is not to be confused with probabilistic
independence.
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Proof. In general, the set of all factors that are exogenous with respect to a
causal structure varies independently in the Humean mosaic of that structure,
because nothing in the causal structure implies that any combination of values
of these exogenous factors is empirically impossible, such that all of these com-
binations are contained in the Humean mosaic of the structure (Baumgartner
and Falk, 2023a, 175).

As non-specific factors A and B and specific factors X1, X2, C, and Y1 are
exogenous with respect to (6), the factor set {A, B, X1, X2, C, Y1} varies
independently in δ∗2 . So, for any combination of values of A and B that appears
in δ∗2 , δ∗2 contains a configuration featuring this combination while having all
specific factor values absent. Since each disjunct in E’s antecedent contains a
specific factor value, and since a disjunct is absent when any of its conjuncts is
absent, all disjuncts in E’s antecedent are absent in this configuration, resulting
in the absence of E’s antecedent. Given that E’s antecedent is necessary for E, E
cannot be featured in this configuration. Therefore, for each value combination
of A and B appearing in δ∗2 , δ∗2 contains at least one configuration featuring this
combination together with ¬E.

Furthermore, the independent variation of exogenous factors ensures that,
for any value combination of A and B that appears in δ∗2 , δ∗2 contains at least
one configuration featuring this combination while having the disjunct in E’s
antecedent comprising only specific factor values (here, Y1) present. Since any
disjunct in E’s antecedent is sufficient for E, E is given in this configuration.
Hence, for each value combination of A and B featured in δ∗2 , δ∗2 contains at
least one configuration featuring that combination together with E. Conse-
quently, as, for any value combination of A and B appearing in δ∗2 , δ∗2 contains
at least one configuration featuring this combination together with E and at
least one configuration featuring this combination together with ¬E, E varies
independently of A and B in δ∗2 .

Appendix A demonstrates that this independent variation of endogenous
factors from their non-specific causing factors generalizes to all acyclic full S-
expansions. It follows that adding complexity to a causal structure as is done
in a full S-expansion leads to a highly diverse distribution of matters of fact.
The specific factor values act like switches that can determine the value of a
given endogenous factor regardless of the values of that endogenous factor’s non-
specific causing factors. This is reminiscent of intervention variables in accounts
like Woodward’s (2003, 98), which are factors that can change the value of a
factor X on which they intervene while breaking the causal dependence between
X and X’s other causing factors.

While qualifying as a full S-expansion imposes a very stringent demand on
the complexity of causal structures, what matters for my argument is that, if
a causal structure with this complexity level is not uniquely identified by the
INUS∗ theory, then this unidentifiability cannot be attributed to the structure’s
simplicity but instead demonstrates a problem with the theory itself.
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3.2 The triangle problem
Consider the following NR2-model with a Humean mosaic referred to as δ3 (a
mosaic not displayed due to space constraints):5

(Y1 ∨AX1 ↔ B)(Y2 ∨ABX2 ↔ C) (7)

Model (7) implies that Y1 causes B; that A in conjunction with X1 causes B;
that Y2 causes C; and that the conjunction of A, B, and X2 causes C. I refer to
this model as a ‘triangle’ model, because it represents a causal triangle structure
with non-specific factor values A, B, and C as its vertices.

This triangle model is fully S-expanded: it has a disjunct exclusively com-
prising specific factor values in each of its NR2-antecedents (Y1 in Y1∨AX1 and
Y2 in Y2∨ABX2) and a specific factor value in each of its other disjuncts (X1 in
AX1 and X2 in ABX2). Therefore, it should be complex enough to be uniquely
determined by its Humean mosaic δ3.

However, two other models are NR2-equivalent to model (7):

(Y1 ∨AX1 ↔ B)(Y2 ∨AY1X2 ∨AX1X2 ↔ C) (8)

(Y1 ∨AX1 ↔ B)(Y2 ∨AY1X2 ∨ ¬Y1BX2 ↔ C) (9)

The ambiguity between models (7) and (8) is not a causal ambiguity but instead
exemplifies what Baumgartner and Falk (2023a, 184) call a functional ambiguity.
The distinctive feature of functional ambiguities is that they are ambiguities
between non-conflicting models, that is, models which can be interpreted as
representing the same causal structure. Specifically, if model (7) represents the
direct causal relevance relations in a causal structure (relative to the factor
frame {Y1, A, X1, B, Y2, X2, C}), then model (8) represents indirect causal
relevance relations in that same structure. This is because (8) can be obtained
from (7) by replacing B in the NR2-antecedent Y2 ∨ABX2 by B’s causes Y1 ∨
AX1; rewriting the resulting expression Y2 ∨ A(Y1 ∨ AX1)X2 as a disjunction
of conjunctions Y2 ∨AY1X2 ∨AAX1X2; and removing a redundant appearance
of A from AAX1X2. Model (8) thus ‘skips over’ B in explicitly representing
the causal relevance of Y1 ∨ AX1 to C implied by (7) and can be viewed as
a less fine-grained representation of the structure represented by (7). So, the
NR2-equivalence between models (7) and (8) does not jeopardize the INUS∗

theory’s ability to reduce the structure represented by (7) to a Humean mosaic
(Baumgartner and Falk, 2023a, 184-185).

Model (9), in contrast, cannot represent the same structure as model (7).
This is because (9) implies that ¬Y1BX2 causes C—which is not implied by
model (7)—while model (7) indicates that ABX2 causes C—which is not im-
plied by model (9). Consequently, the ambiguity between models (7) and (9)
is not a functional ambiguity but a genuine causal ambiguity. Therefore, the

5I thank Timm Lampert for bringing to my attention a similar example structure, which
inspired this one.
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INUS∗ theory fails to uniquely identify model (7) based on its Humean mosaic.
As model (7) is fully S-expanded, this failure cannot be attributed to simplic-
ity. Correspondingly, this failure, which I term ‘the triangle problem’, poses a
challenge to the theory’s reductive aim.

An INUS∗ theorist might try to dismiss this challenge by simply positing that
model (7) does not represent any part of the real world’s causal structure—a
response that aligns with Baumgartner and Falk’s (2023a, 187) ‘Causal Unique-
ness assumption’, which states that the actual world has one determinate causal
structure. However, such a response would be ad hoc, and positing that model
(7) does not represent any part of the real world’s causal structure would be
highly implausible. Moreover, model (7) is not the only fully S-expanded struc-
ture unidentifiable by the INUS∗ theory. Instead, it is a representative of
a broader family of structures—which I call stemmatic structures—that the
INUS∗ theory fails to uniquely identify based on Humean mosaics.

I define stemmatic structures as those generated by one of two procedures.
The first procedure begins with model (7) and extends the causal chain from A,
through B, to C by adding intermediate links to it. For example, incorporating
a link R between A and B yields:

(Y1 ∨AX1 ↔ R)(Y3 ∨RX3 ↔ B)(Y2 ∨ABX2 ↔ C) (10)

This procedure generates additional stemmatic structures by adding more links
to the causal chain from A, through R and B, to C. A common feature of these
structures is that a factor appears alongside one of its ancestors in the same
conjunctive cause. For instance, in the structure represented by model (10), the
conjunctive cause ABX2 features B alongside its ancestor A.

The second procedure also starts with model (7) but adds a link between A
and C that is not on the chain through B, as in the following model:

(Y1 ∨AX1 ↔ B)(Y3 ∨AX3 ↔ T )(Y2 ∨BTX2 ↔ C) (11)

This procedure generates further stemmatic structures by adding more links
to either of the chains from A to C. In all structures generated using this
second procedure, two factors that share a common ancestor appear together in
a conjunctive cause. For example, in the structure represented by model (11),
the two factors B and T, which share a common ancestor A, appear together in
the conjunctive cause BTX2.

These two procedures can generate infinitely many stemmatic structures,
all fully S-expanded yet unidentifiable by the INUS∗ theory. Model (10), for
instance, is a full S-expansion with specific factor values Y1, X1, Y3, X3, Y2, and
X2, while being NR2-equivalent to the following model:

(Y1∨AX1↔R)(Y3∨RX3↔B)(Y2∨AY3X2∨AY1X3X2∨¬Y1RX3X2↔C)
(12)

Since models (10) and (12) cannot represent the same causal structure, the
structure represented by (10) is unidentifiable even though it is fully S-expanded.
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While stemmatic structures represent only a subset of the fully S-expanded
structures that the INUS∗ theory fails to uniquely identify, they demonstrate
that infinitely many such structures can be generated. This highlights the sever-
ity of the challenge to the INUS∗ theory’s reductive aim. While positing that
model (7) does not represent any part of the real world’s causal structure was
already ad hoc and implausible, denying that any stemmatic structure is part of
the causal structure of the real world would be entirely untenable. The INUS∗

theory must be amended to restore its reductive aim.

4 The solution

4.1 The 3rd Non-Redundancy condition (NR3)
Fortunately, recent work by Zhang and Zhang (2025) has provided a promis-
ing candidate for a criterion that, when added to the INUS∗ theory, enables the
unique identification of the triangle structure and other stemmatic structures.
Zhang and Zhang have proposed this criterion, called the 3rd Non-Redundancy
condition (NR3), independently of the triangle problem, with the goal of re-
moving redundancies from NR2-models that are not yet eliminated by the non-
redundancy criteria imposed by the INUS∗ theory (i.e. NR2 and structural
minimality).

NR2 stipulated that conjuncts in conjunctive causes must be non-redundant
for the sufficiency of the conjunction to which they belong and that conjunctions
in causal antecedents must be non-redundant for the necessity of the disjunction
to which they belong. Note that, since the antecedent of an NR2-biconditional
is sufficient and necessary for the consequent of that biconditional, the set of
factors in the antecedent determines the factor featured in the consequent:

Determination of a factor: A factor set F determines a factor B in a
Humean mosaic δ iff, for every value combination of the factors in F
that appears in at least one configuration in δ, all configurations in δ with
this value combination have the same value for B (cf. Zhang and Zhang’s,
2025, 7, definition of B being a partial function of F).

NR3 adds to the stipulations of NR2 the requirement that, for any causal an-
tecedent for a given consequent, no proper subset of the factors appearing in
that antecedent determines the factor featured in that consequent. In other
words, NR3 stipulates that the set of factors in a causal antecedent must be
functionally minimal :

Functional minimality: A factor set F is functionally minimal with respect
to a factor B in a Humean mosaic δ iff the following two conditions are
met (Zhang and Zhang, 2025, 7):

1. F determines B in δ; and

2. there is no F′⊂F such that F′ determines B in δ.
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NR3: An NR2-biconditional Π ↔ B for a Humean mosaic δ, with FΠ the set
of factors featured in Π, satisfies NR3 for δ iff FΠ is functionally minimal
with respect to B in δ.

NR3-biconditional: An NR2-biconditional Π ↔ B for a Humean mosaic δ is
an NR3-biconditional for δ iff Π ↔ B satisfies NR3 for δ.

NR3-model: An NR2-model M for a Humean mosaic δ is an NR3-model for
δ iff all of M’s NR2-biconditionals satisfy NR3 for δ.

To illustrate NR3, consider models (7) and (9). The exhaustive set of fac-
tors in model (7)’s NR2-antecedent for C is {Y2, A, B, X2}. As model (7)’s
antecedent for C is sufficient and necessary for C, the factor set {Y2, A, B, X2}
determines C in δ3. Meanwhile, model (9)’s NR2-antecedent for C features fac-
tors {Y2, A, B, X2, Y1}. Since {Y2, A, B, X2}, which determines C, is a proper
subset of {Y2, A, B, X2, Y1}, {Y2, A, B, X2, Y1} is not functionally minimal
(Y1 is redundant in it for determining C). This implies that model (9)’s NR2-
antecedent for C violates NR3, and thereby that model (9) itself violates NR3.

As model (9) violates NR3, adding Zhang and Zhang’s (2025) criterion of
NR3 to the INUS∗ theory would enable the unique identification of the trian-
gle structure. Moreover, this addition would enable the unique identification
of stemmatic structures and other fully S-expanded structures that cannot be
uniquely identified by the INUS∗ theory.6

Nevertheless, before NR3 can be incorporated into the INUS∗ theory to
uniquely identify stemmatic structures and thereby solve the triangle problem,
the adequacy of NR3 as a criterion of INUS causation must be assessed. Zhang
and Zhang (2025) argue for the incorporation of NR3 mainly through its ca-
pacity to eliminate ambiguities, and this alone is insufficient justification for
regularity theorists: ambiguity reduction is only beneficial if the eliminated
models fail to satisfy appropriate difference-making criteria, while—as I ex-
plain in the following section—a significant objection against NR3 is that its
equivalent difference-making criterion appears to conflict with the principle of
conjunctivity.

4.2 NR3 and difference-making
Recall that DM2, the difference-making criterion equivalent to NR2, requires
that for any appearance of a factor value A in the NR2-antecedent for a conse-
quent B, there is a pair of configurations {σi, σj} such that A and B are given
in σi and are not given in σj while any accompanying conjuncts are present and
any alternative conjunctions are absent in both σi and σj (i.e. a DM2-pair).
For example, consider Table 3, which displays all the configurations in δ3 that
qualify as members of DM2-pairs for Y1 in Y2∨AY1X2∨¬Y1BX2 ↔ C in model
(9). In each of these configurations, accompanying conjuncts A and X2 are

6While a formal proof that NR3 allows for the unique identification of all fully S-expanded
structures remains outstanding, extensive theoretical analysis and computational simulations
have not yielded any counterexamples to this conjecture.
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Y1 C Y2 A X2 B X1

σ1 1 1 0 1 1 1 1
σ2 1 1 0 1 1 1 0
σ3 0 0 0 1 1 0 0

Table 3: All the configurations in δ3 that qualify as members of DM2-pairs for
Y1 in Y2∨AY1X2∨¬Y1BX2 ↔ C in model (9).

present and alternative conjunctions Y2 and ¬Y1BX2 are absent. Furthermore,
configurations σ1 and σ2 both feature Y1 and C, and configuration σ3 features
neither Y1 nor C. Therefore, {σ1, σ3} and {σ2, σ3} are the DM2-pairs for Y1 in
Y2∨AY1X2∨¬Y1BX2 ↔ C.

The difference-making requirement equivalent to NR3, referred to as the
criterion of NR3-Difference Making (DM3) (Zhang and Zhang, 2025), involves
a stricter notion of a difference-making pair than DM2 does: DM3 requires
that all factors besides Y1 in antecedent Y2∨AY1X2∨¬Y1BX2 (i.e. Y2, A, X2,
and B) are constant across difference-making pairs. Note that neither {σ1, σ3}
nor {σ2, σ3} satisfies this stricter notion of a difference-making pair imposed by
DM3, because B varies across both these pairs.

To express DM3 more precisely, let Aϕ1∨ϕ2∨...∨ϕn be a disjunction of
conjunctions of factor values, let Fϕ be the set of factors in Aϕ1∨ϕ2∨...∨ϕn,
and let B be a single factor value. Additionally, I refer to the factors in Fϕ\{A}
as the fellow causing factors of A. An NR2-biconditional satisfies NR3 for a
Humean mosaic iff that biconditional satisfies DM3 for that mosaic (Zhang and
Zhang, 2025)7:

NR3-Difference Making (DM3): An NR2-biconditional Aϕ1∨ϕ2∨...∨ϕn ↔
B for a Humean mosaic δ satisfies DM3 for δ iff δ contains at least one
NR3-Difference-Making pair (DM3-pair) for at least one value of each
factor in Fϕ.8

NR3-Difference-Making pair (DM3-pair): An NR3-Difference-Making pair
(DM3-pair) for A in biconditional Aϕ1∨ϕ2∨...∨ϕn ↔ B is a pair of con-
figurations {σi, σj} such that:

1. A and B are given in σi and are not given in σj ; and
2. any factor in Fϕ\{A} (i.e. each of A’s fellow causing factors) has the

same value in σi and σj .
7My formulation of DM3 differs slightly from Zhang and Zhang’s (2025, 13) by explicitly

presenting DM3 as an additional requirement on biconditionals that already satisfy NR2.
This modification prevents cases in which biconditionals could satisfy DM3 while violating
DM2—an unintended possibility under Zhang and Zhang’s original formulation, exemplified
by biconditionals like AB ∨ ¬A¬B ∨ ¬AC ∨ BC ↔ E. While requiring biconditionals to
already satisfy NR2 represents a technical departure from Zhang and Zhang’s formulation,
my formulation better serves Zhang and Zhang’s (2025, 13) expressed purpose of formulating
a difference-making criterion strictly stronger than DM2.

8As Zhang and Zhang (2025, 12-14) point out, it is possible that, for some factor in Fϕ, δ
contains a DM3-pair for one but not both values of that factor.
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As Zhang and Zhang (2025, 14) themselves acknowledge, an objection to
DM3 is that DM2 is already sufficiently strict as a difference-making criterion
in the INUS framework because, according to this framework, it suffices to have
accompanying conjuncts present and alternative conjunctions absent across a
difference-making pair (as DM2 requires) to ensure that the variation in the
effect across a difference-making pair is attributable to the variation in the
considered candidate cause (A in our definition).

Additionally requiring that fellow causing factors are constant (as DM3 does)
is only motivated when presupposing that variation in an individual fellow caus-
ing factor such as B in model (9) can account for variation in the effect without
changing the truth value of any alternative conjunctions like ¬Y1BX2 in model
(9). But this presupposition seems to conflict with the principle of conjunc-
tivity, which states that all conjuncts in a conjunction of causes must occur
together to bring about the effect, implying that variation in an effect can only
be attributed to a difference in value of an individual fellow causing factor if
this difference changes the truth value of a conjunction that features this factor.

Although Zhang and Zhang (2025, 14) acknowledge this objection, even
granting that it is a ‘reasonable response’ to the proposal of adding the require-
ment that individual causing factors are kept constant across a difference-making
pair (as DM3 does), they neither provide a convincing refutation nor conclude
that DM3 is less appropriate than DM2. Instead, they suggest that the need for
a causing factor to make a difference to its effect while fellow causing factors are
constant—which they claim to be highly intuitive but which an INUS theorist
might find unappealing based precisely on the principle of conjunctivity—simply
outweighs the need for a difference-making criterion to align with the principle
of conjunctivity. By neglecting to refute this objection convincingly, Zhang and
Zhang leave unresolved the question of whether adopting NR3 (and thus the
equivalent DM3) in the INUS∗ theory can lead to an adequate theory of causa-
tion.

4.3 DM3 reformulated
Fortunately, the apparent conflict between DM3 and the principle of conjunctiv-
ity dissolves upon closer examination of DM3. While DM3 does allow individual
causing factors to account for variation in their effects independently of the al-
ternative conjunctions in which they appear in a given model, deriving from this
that DM3 conflicts with conjunctivity misses a crucial point: DM3 still requires
that variation in an individual causing factor can account for variation in an
effect only through variation in some conjunction that features this individual
causing factor, just not in an alternative conjunction that appears in the given
model.

What DM3 actually requires by holding all fellow causing factors constant
across difference-making pairs is that all sufficient conjunctions composed exclu-
sively of these fellow causing factors remain constant across these pairs. To make
this explicit, I formulate a difference-making criterion called NR3-Difference-
Making ′ (DM3 ′) which, as proven in Appendix B, is equivalent to DM3, and
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which differs from DM3 in the second criterion of a DM3′-pair. Again, let
Aϕ1∨ϕ2∨...∨ϕn be a disjunction of conjunctions of factor values, let Fϕ be the
set of factors in Aϕ1∨ϕ2∨...∨ϕn, and let B be a single factor value.

NR3-Difference Making′ (DM3′): An NR2-biconditional Aϕ1∨ϕ2∨...∨ϕn

↔ B for a Humean mosaic δ satisfies DM3′ for δ iff δ contains at least one
NR3-Difference-Making ′ pair (DM3 ′-pair) for at least one value of each
factor in Fϕ.

NR3-Difference-Making′ pair (DM3′-pair): An NR3-Difference-Making ′

pair (DM3 ′-pair) for A in biconditional Aϕ1∨ϕ2∨...∨ϕn ↔ B is a pair of
configurations {σi, σj} such that:

1. A and B are given in σi and are not given in σj ; and

2. any (minimally) sufficient conjunctions for B consisting exclusively
of factors in Fϕ\{A} are absent in σi and σj .

The equivalence of DM3′ to DM3, and therefore to NR3, reveals that moti-
vating NR3/DM3 is fully compatible with the principle of conjunctivity. Like
DM2, DM3 requires certain (minimally) sufficient conjunctions to be constantly
absent across difference-making pairs, adhering to the principle that individual
causes only bring about their effects when each component in a conjunction to
which they belong is instantiated.

The key difference between DM2 and DM3 is that DM3 considers a broader
range of conjunctions when evaluating whether changes in the effect can be
attributed to A rather than to A’s fellow causing factors. While DM2 only
considers the minimally sufficient conjunctions that are explicitly present in
the biconditional under consideration, DM3 considers all minimally sufficient
conjunctions that can be formed exclusively from fellow causing factors.

This broadening of the range of considered conjunctions constitutes a mean-
ingful improvement to the INUS∗ theory rather than a departure from its princi-
ples. Since the theory aims to characterize how causal structures are determined
by Humean mosaics rather than defining these structures in isolation, it is ap-
propriate to consider every conjunction formed exclusively from fellow causing
factors that is minimally sufficient within a given Humean mosaic when deter-
mining whether a factor’s values are causally relevant in that mosaic.

4.4 A new definition of causal relevance
Having refuted the objection to NR3, it is now clear how NR3 combines elim-
inating redundant elements from causal structures with imposing an adequate
difference-making criterion. This makes NR3 an effective solution to the trian-
gle problem, warranting that it is integrated into the INUS∗ theory’s definition
of causal relevance. This integration results in the following definition:

Causal relevance′: Let Ω be a disjunction of conjunctions of factor values and
B a single factor value. Ω is causally relevant to B iff there exists a factor
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frame F which is a set of (modally independent) factors including B and
all factors featured in Ω, with δ a Humean mosaic over F, such that the
following two conditions are satisfied:

1. there exists an NR3-biconditional Π ↔ B for δ that is part of an
NR3-model for δ, such that Ω is contained in Π; and

2. for every factor frame expansion F′ ⊃ F with mosaic δ′: there exists
an NR3-biconditional Π′ ↔ B for δ′ that is part of an NR3-model
for δ′, such that Ω is contained in Π′.

5 Conclusion
This paper has demonstrated a detrimental limitation of the INUS∗ theory
of causation as presented by Baumgartner and Falk (2023a): its inability to
uniquely identify stemmatic causal structures based on Humean mosaics, while
this failure cannot be attributed to the simplicity of these structures. This
limitation reveals that the theory fails in its reductive aim of defining causation
purely in terms of regularities. However, I have shown that incorporating Zhang
and Zhang’s (2025) NR3 criterion alongside the INUS∗ theory’s existing criteria
enables the unique identification of stemmatic structures. Furthermore, I have
refuted a significant objection against NR3—this criterion’s alleged conflict with
the principle of conjunctivity. By demonstrating how NR3’s difference-making
criterion can be reformulated to explicitly align with conjunctivity, I have es-
tablished NR3 as an adequate addition to the INUS∗ theory, thereby restoring
this theory’s reductive aim.
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A Independent variation in full S-expansions
This appendix establishes that, in any acyclic full S-expansion, each endogenous
factor varies independently of its non-specific causing factors in the Humean
mosaic of that full S-expansion.

Section 3.1 explained why endogenous factor E varies independently of its
non-specific causing factors A and B in the mosaic of model (6). This indepen-
dence arises provided that, for every empirically possible value combination of
E’s non-specific causing factors and every logically possible value combination of
E’s specific causing factors, this mosaic contains a configuration featuring these
two value combinations together. The logically possible value combinations of



A Independent variation in full S-expansions 27

E’s specific causing factors include the combination in which no specific factor
value in E’s antecedent is given (such that E is not given), as well as combina-
tions in which the disjunct comprising only specific factors in this antecedent
is present (such that E is given). Therefore, E’s independent variation from its
non-specific causing factors is guaranteed when the set comprising E’s specific
factors varies independently of the set comprising E’s non-specific factors:

Independent variation (factor set of factor set): A factor set F1 varies
independently of a factor set F2 in a Humean mosaic δ iff, for every com-
bination of values of the factors in F2 that appears in δ and every logically
possible value combination of the factors in F1, δ contains at least one con-
figuration featuring these two value combinations together.

In model (6), such independent variation is guaranteed because all of E’s
causing factors are exogenous. However, this is not always the case in a full S-
expansion. Therefore, what remains to be established in order to demonstrate
that any endogenous factor in a full S-expansion varies independently of its non-
specific causing factors in the mosaic of that full S-expansion is that, for any
endogenous factor in any full S-expansion (even endogenous factors that have
endogenous causing factors), the set comprising this endogenous factor’s spe-
cific causing factors varies independently of the set comprising this endogenous
factor’s non-specific causing factors.

To establish that this holds, consider any full S-expansion M with Humean
mosaic δ over factor frame FM. Let factor W ∈ FM be an endogenous factor
with respect to M. Furthermore, let Fsp = {C1, ..., Cn} ⊂ FM be the factor set
comprising all specific causing factors of W with respect to M, and let Fnsp ⊂
FM refer to the factor set comprising all non-specific causing factors of W with
respect to M. The goal is then to demonstrate that Fsp varies independently
of Fnsp in δ. I achieve this in two steps. First, I show that each factor in Fsp
varies independently of the set comprising all other factors in Fsp together with
all factors in Fnsp, for instance, C1 varies independently of (Fsp\{C1})∪Fnsp.
Second, I establish that, given this first result, Fsp varies independently of Fnsp.

Recall from Section 3.1 that all exogenous factors with respect to a causal
structure vary independently of each other in the Humean mosaic of that struc-
ture because nothing in the causal structure implies that any combination of
their values is empirically impossible. More generally, any factor X varies in-
dependently of any factor set not containing a factor Y such that any of the
following relationships holds:

1. X is an ancestor of Y;

2. Y is an ancestor of X; or

3. X and Y have a common ancestor.

Unless one of these relationships holds between X and a factor in a given factor
set, a causal structure imposes no restrictions preventing any value of X from
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occurring together with any empirically possible combination of values from this
factor set.

Therefore, C1 varies independently of (Fsp\{C1})∪Fnsp in δ if (Fsp\{C1})∪Fnsp
does not contain any factor D such that any of the following relationships holds:

1. C1 is an ancestor of D;

2. D is an ancestor of C1; or

3. C1 and D have a common ancestor.

To show that none of these three relationships holds between C1 and any factor
in (Fsp\{C1})∪Fnsp, I start by establishing that (1.) C1 cannot be an ancestor
of any factor in (Fsp\{C1})∪Fnsp. As factors in Fsp\{C1} are specific factors
and therefore, by definition, exogenous, such that they do not have any ances-
tors, C1 cannot be an ancestor of any factor in Fsp\{C1}. Furthermore, since
C1 is a specific factor, C1 appears in only one causal antecedent in M (here:
that of a value of W). Hence, C1 can be an ancestor of a factor in Fnsp only
through W being an ancestor of that factor in Fnsp (not through C1 causing
some factor other than W which is an ancestor of that factor in Fnsp). Further-
more, factors in Fnsp are non-specific causing factors of W and therefore, by
definition, ancestors of W. Therefore, C1 can be an ancestor of a factor in Fnsp
only if W is an ancestor of that factor in Fnsp while that factor in Fnsp is also
an ancestor of W, which is prohibited by the assumption of acyclicity. As C1

can neither be an ancestor of a factor in Fsp\{C1} nor be an ancestor of a factor
in Fnsp, C1 cannot be an ancestor of any factor in (Fsp\{C1})∪Fnsp. Further-
more, as C1 is a specific factor and therefore, by definition, does not have any
ancestors, no factor in (Fsp\{C1})∪Fnsp can be (2.) an ancestor of C1 or (3.)
share an ancestor with C1.

So, as there cannot be a factor D in (Fsp\{C1})∪Fnsp such that C1 is an
ancestor of D, D is an ancestor of C1, or C1 and D have a common ancestor, C1

varies independently of (Fsp\{C1})∪Fnsp in δ. Analogously, C2 varies indepen-
dently of (Fsp\{C2})∪Fnsp in δ, and so on. In sum, each specific causing factor
of an endogenous factor varies independently of the set comprising all other
specific causing factors and all non-specific causing factors of that endogenous
factor in the mosaic of a full S-expansion.

This fact allows to demonstrate that Fsp varies independently of Fnsp in
δ. Consider an arbitrary configuration σ1 in δ. For illustrative purposes, let
us represent the values that the factors C1, C2, and C3 take in σ1 by c1, c2,
and c3, respectively. So, C1 = c1, C2 = c2, and C3 = c3 in σ1, where c1, c2,
and c3 each represent either the value 1 or the value 0. Given that C1 varies
independently of (Fsp\{C1})∪Fnsp in δ, δ contains another observation—let us
call it σ2—with the values of the factors in (Fsp\{C1})∪Fnsp the same as in σ1,
but in which C1 ̸= c1 (as per the definition of a factor varying independently of
a factor set). Thus, σ2 has C1 ̸= c1 and C2 = c2 while featuring the same value
combination of the factors in (Fsp\{C1, C2})∪Fnsp as σ1 does.

Furthermore, given that δ contains σ1 and σ2, C2’s independent variation of
(Fsp\{C2})∪Fnsp in δ implies that δ contains at least two more configurations
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in addition to σ1 and σ2. First, δ must contain a configuration—let us call it
σ3—with the same value combination of the factors in (Fsp\{C2})∪Fnsp as σ1

but with a different value of C2 than the one in σ1. This means that σ3 has
C1 = c1 and C2 ̸= c2 while featuring the same value combination of the factors
in (Fsp\{C1, C2})∪Fnsp as σ1 does.

Second, δ must contain a configuration—let us call it σ4—with the same
value combination of the factors in (Fsp\{C2})∪Fnsp as σ2 but with a different
value of C2 than the one in σ2. So, σ4 has C1 ̸= c1 and C2 ̸= c2 while featuring
the same value combination of the factors in (Fsp\{C1, C2})∪Fnsp as σ2 does.
Importantly, this means that σ1, σ2, σ3, and σ4 each have the same value
combination of (Fsp\{C1, C2})∪Fnsp.

In sum, if C1 varies independently of (Fsp\{C1})∪Fnsp and C2 varies inde-
pendently of (Fsp\{C2})∪Fnsp in δ, then δ must contain 2 ·2 = 4 configurations
with the same value combination of (Fsp\{C1, C2})∪Fnsp and with distinct
value combinations of C1 and C2, that is, C1 = c1, C2 = c2 (in σ1); C1 ̸= c1,
C2 = c2 (in σ2); C1 = c1, C2 ̸= c2 (in σ3); and C1 ̸= c1, C2 ̸= c2 (in σ4).

Similarly, since C3 varies independently of (Fsp\{C3})∪Fnsp, δ must contain
four configurations in addition to the four configurations σ1, σ2, σ3, and σ4.
These new configurations must match σ1, σ2, σ3, and σ4 in their values of the
factors in (Fsp\{C1, C2, C3})∪Fnsp but must have C3 ̸= c3. Consequently, δ
must contain (2·2)·2 = 23 = 8 configurations with the same value combination
of the factors in (Fsp\{C1, C2, C3})∪Fnsp and with distinct value combinations
of C1, C2, and C3.

The same reasoning applies to C4, C5, and so on, until Cn. Overall, when
each factor in Fsp = {C1, C2, ..., Cn} varies independently of the set comprising
the other factors in Fsp together with the factors in Fnsp, then δ must contain
2n configurations with distinct value combinations of the factors in Fsp and with
the same value combination of the factors in Fnsp.

Since Fsp = {C1, C2, ..., Cn} contains n binary factors, there exist 2n

distinct logically possible value combinations of the factors in Fsp. Therefore, if
δ contains 2n configurations with distinct value combinations of the factors in
Fsp and with the same value combination of the factors in Fnsp, then δ contains,
for each logically possible value combination of the factors in Fsp, at least one
configuration with this value combination of the factors in Fsp together with
this same value combination of the factors in Fnsp.

This reasoning generalizes to every value combination of the factors in Fnsp
that appears in δ. This demonstrates that, for every value combination of the
factors in Fnsp that appears in δ and every logically possible value combination
of the factors in Fsp, δ contains at least one configuration featuring these two
value combinations together. Therefore, Fsp varies independently of Fnsp in
this mosaic.

As established above, this result implies that any endogenous factor in an
acyclic full S-expansion varies independently of its non-specific causing factors
in the mosaic of that full S-expansion.
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B Equivalence of DM3 and DM3′

This appendix provides a two-part proof of the equivalence between DM3 and
DM3′.9 First, I show that any NR2-biconditional satisfying DM3 in a Humean
mosaic must also satisfy DM3′ in that mosaic:

Proof. Consider the NR2-biconditional Aϕ1∨ϕ2∨...∨ϕn ↔ B for a Humean mo-
saic δ, with Fϕ the exhaustive set of factors appearing in Aϕ1∨ϕ2∨...∨ϕn. Con-
sider DM3-pair {σi, σj} for A and B in δ. Since B is not given in σj , any suffi-
cient conjunctions for B, and therefore any minimally sufficient conjunctions for
B consisting exclusively of factors in Fϕ\{A}, are absent in σj . Furthermore,
as all factors in Fϕ\{A} have the same value in σi and σj , all conjunctions con-
sisting exclusively of factors in Fϕ\{A} have the same value in σi and σj . Since
all minimally sufficient conjunctions for B consisting exclusively of factors in
Fϕ\{A} are absent in σj and have the same value in σi and σj , all minimally
sufficient conjunctions for B consisting exclusively of factors in Fϕ\{A} are ab-
sent in σi and σj . This implies that every DM3-pair is also a DM3′-pair, such
that any NR2-biconditional that has a DM3-pair for at least one value of each
factor in its antecedent also has a DM3′-pair for at least one value of each factor
in its antecedent.

Second, and crucially for the INUS framework, I will show that any NR2-
biconditional that violates DM3 in a Humean mosaic must also violate DM3′
in that mosaic. This establishes that when an NR2-biconditional fails to satisfy
DM3, it contains at least one factor for which all DM2-pairs involve variation
in the truth value of a (minimally) sufficient conjunction made up exclusively
of that factor’s fellow causing factors.

Proof. Consider the NR2-biconditional Aϕ1∨ϕ2∨...∨ϕn ↔ B for a Humean mo-
saic δ, with Fϕ the exhaustive set of factors appearing in Aϕ1∨ϕ2∨...∨ϕn.

Suppose that Aϕ1∨ϕ2∨...∨ϕn ↔ B violates DM3. Then there is at least
one factor appearing in the antecedent of this biconditional—let us take A as
an example—such that δ contains no DM3-pairs for either of A’s values with
respect to this biconditional. This implies, first, that δ contains no pair of
configurations with all factors in Fϕ\{A} constant and A and B both given in
one configuration and both not given in the other (which would constitute a
DM3-pair for A). Second, it implies that δ contains no pair of configurations
with all factors in Fϕ\{A} constant and ¬A and B both featured in one and
both not featured in the other (which would constitute a DM3-pair for ¬A).
Therefore,

(i) δ does not contain a pair of configurations across which all factors in
Fϕ\{A} are constant while A and B both vary.

Furthermore, as Aϕ1∨ϕ2∨...∨ϕn ↔ B is an NR2-biconditional and therefore,
by definition, true in δ, δ does not contain a pair of configurations across which

9Parts of the upcoming proof closely follow strategies used by Zhang and Zhang (2025).
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all factors in Fϕ are constant (such that the truth value of Aϕ1∨ϕ2∨...∨ϕn is
constant) while B varies, since the truth value of the consequent of the bicon-
ditional would differ from that of the antecedent in one configuration of such a
pair. As Fϕ can be rewritten as (Fϕ\{A})∪{A}, this can be reformulated as
follows:

(ii) δ does not contain a pair of configurations across which all factors in
Fϕ\{A} are constant and A is constant while B varies.

Since any pair of configurations must have either A varying or A constant,
statements (i) and (ii) above imply the following:

(iii) δ does not contain a pair of configurations across which all factors in
Fϕ\{A} are constant while B varies.

This entails that Fϕ\{A} determines B in δ.
I now prove that, if Fϕ \{A} determines B in δ, then δ cannot contain a

DM3′-pair for any of A’s values for Aϕ1∨ϕ2∨...∨ϕn ↔ B. First, since Fϕ\{A}
determines B in δ, there exists an expression involving only factors in Fϕ\{A}
that is both sufficient and necessary for B in δ. This expression can be equiva-
lently rewritten as a disjunction of conjunctions Π, for which the following three
claims hold:

1. each disjunct in Π is a conjunction featuring only factors from Fϕ\{A}
(because Π is a disjunction of conjunctions featuring only factors from
Fϕ\{A});

2. each disjunct in Π is sufficient for B in δ (since Π is sufficient for B in δ);
and

3. every configuration in δ in which B is given must have at least one disjunct
of Π present (as Π is necessary for B in δ).

From these three points, it follows that every configuration in δ in which B
is given must contain at least one sufficient conjunction for B featuring only
factors from Fϕ\{A}.

Furthermore, whenever a sufficient conjunction for B featuring only factors
from Fϕ \{A} is present, a minimally sufficient conjunction for B featuring
only factors from Fϕ\{A} is present, as any non-minimally sufficient conjunc-
tion yields a minimally sufficient conjunction when conjuncts redundant for its
sufficiency are removed.

Therefore, if δ contains no DM3-pairs for (any value of) A, then any con-
figuration in δ in which B is given must have at least one minimally sufficient
conjunction for B featuring only factors from Fϕ\{A} present. This fact im-
plies that δ contains no DM3′-pair for A, since, by definition, any DM3′-pair
for A contains a configuration with B and without any minimally sufficient
conjunction for B featuring only factors from Fϕ \{A}. As δ cannot contain
any DM3′-pairs for A if it contains no DM3-pairs for A, it follows that any
NR2-biconditional that violates DM3 also violates DM3′.
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